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Abstract. Considering the complexity of traffic systems and the challenges brought by various factors in traf-
fic prediction, we propose a spatial-temporal graph convolutional neural network based on attention mecha-
nism (AMSTGCN) to adapt to these dynamic changes and improve prediction accuracy. The model combines
the spatial feature extraction capability of graph attention network (GAT) and the dynamic correlation learn-
ing capability of attention mechanism. By introducing the attention mechanism, the network can adaptively
focus on the dependencies between different time steps and different nodes, effectively mining the dynamic
spatial-temporal relationships in the traffic data. Specifically, we adopt an improved version of graph attention
network (GAT v2) in the spatial dimension, which allows the model to capture more complex dynamic spa-
tial correlations. Furthermore, in the temporal dimension, we combine gated recurrent unit (GRU) structure
with an attention mechanism to enhance the model’s ability to process sequential data and predict traffic flow
changes over prolonged periods. To validate the effectiveness of the proposed method, extensive experiments
were conducted on public traffic datasets, where AMSTGCN was compared with five different benchmark
models. Experimental results demonstrate that AMSTGCN exhibits superior performance on both short-term
and long-term prediction tasks and outperforms other models on multiple evaluation metrics, validating its
potential and practical value in the field of traffic prediction.

Keywords: transportation system, attention mechanism, dynamic change, spatial-temporal dependency

1 Introduction

With the acceleration of urbanization, traffic congestion has become a common phenomenon in modern life.
Accurate prediction of traffic conditions plays a very important role in improving the efficiency of transportation
systems, reducing congestion, optimizing route selection, providing real-time navigation, and planning urban de-
velopment.

As a key link in urban management and smart transportation systems, traffic prediction is becoming increas-
ingly important. However, there are still many challenges in this field, in particular the need to accurately capture
dynamically changing spatial correlations and complex temporal dependencies [1]. These factors significantly
increase the complexity and difficulty of the prediction. To help the reader understand these challenges intuitive-
ly, we use Fig. 1 and Fig. 2 to provide specific examples for illustration. With these graphs, we show the spa-
tial-temporal dynamics of traffic flows and the difficulty that traditional models have in capturing such dynamics.

(1) Dynamic Spatial Correlations. In previous studies, the spatial correlations between nodes are commonly
represented by predefined static adjacency matrices, as mentioned in reference [2]. However, in real traffic envi-
ronments, the spatial relationships between roads are dynamic systems subject to various factors such as traffic
accidents and traffic regulations. Fig. 1 illustrates a schematic diagram of the road network in a certain urban
area, where A, B, C, and D represent four intersections equipped with traffic detectors and treated as nodes in
the network. For example, if the traffic authority implements a rule at A intersection that prohibits left turns from
east to west, this will directly affect the traffic flow relationship between points A and B. Specifically, due to this
restriction, the direct traffic flow from point A to point B will decrease, which means that the impact of traffic
volume at point A on point B will correspondingly decrease, while the impact of point B on point A will rela-
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tively increase. Additionally, although point C and point B are not directly connected geographically, due to the
left-turn restriction at point A, vehicles wishing to travel from east to west to reach point B must detour through
points C and D, indirectly affecting the traffic conditions at point B. Furthermore, once the traffic rules at point A
change, the spatial correlations of the entire A, B, C, and D node network will also adjust accordingly. With such
an analysis, we can identify the dynamic nature of spatial relationships in real traffic scenarios and their impact
on the design of predictive models.

Fig. 1. Dynamic spatial-temporal relationship diagram of road node traffic flow

(2) Complex and Variable Temporal Dependencies. Traffic data inherently exhibit unique features on different
time scales, including hours, days, weeks, and seasons. For example, morning and evening rush-hour traffic flows
experience significant fluctuations, and weekday congestion patterns can be very different from those on week-
ends. In addition, temporal dependencies of traffic flow data can shift due to external events such as traffic acci-
dents, weather fluctuations, or public gatherings. Fig. 2 illustrates the daily periodicity of traffic volume but also
reveals an anomaly: a significant decrease in traffic volume during the period from 14:50 to 16:40 on Monday
afternoons. The anomaly could be caused by congestion caused by factors such as road accidents or road con-
struction. Therefore, when constructing traffic prediction models, it is necessary not only to take into account the
regular temporal evolution of traffic data but also to capture and model temporal dependencies at different time
scales, as well as potential anomalies that may arise. Such a comprehensive consideration is crucial for improv-
ing prediction accuracy.

300 o

250 ; Y

200 o 1501512 1534 1536 1618 16:40

£ 150

100

|

T T
Sunday Monday Tuesday Wednesday

Fig. 2. The daily periodicity and dynamic variations of traffic flow volume
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Through in-depth analysis, we have gained a new understanding of the importance of dynamic spatial-tempo-
ral relationships in traffic data. These relations include not only the periodic variations of traffic flow over time,
but also sudden changes caused by unpredictable factors such as traffic accidents, weather conditions, and tempo-
rary road closures. Moreover, spatial correlations are continuously affected by factors such as traffic regulations,
road network structure, and urban planning. These dynamic spatial-temporal dependencies require traffic predic-
tion models to have a high level of adaptability and flexibility to accurately capture and respond to these complex
traffic patterns.

In traditional traffic prediction methods, statistical models such as Autoregressive Integrated Moving Average
(ARIMA), Exponential Smoothing models, and Regression models have dominated. However, these models
have significant limitations when dealing with complex, nonlinear, and high-dimensional traffic data. They typi-
cally rely on manually extracted features and are built on linear assumptions, which limits their ability to capture
the deep complexity of traffic patterns. With the introduction of machine learning, especially deep learning mod-
els, the field of traffic prediction has made significant advances. Deep learning models such as Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN) [3] have shown superiority in multiple application
scenarios by automatically learning features from the data. However, these models generally require a large
amount of training data and have room for improvement in modelling the dynamics of spatial-temporal data.

To address these issues, we propose a spatial-temporal graph convolutional neural network (AMSTGCN) that
incorporates an attention mechanism. This model not only automatically learns spatial-temporal features from
complex traffic data, but also effectively adapts to spatial-temporal relationships with different time scales and
dynamic changes. Through experimental validation on public datasets, AMSTGCN demonstrated its superiority
in short-term and long-term traffic prediction tasks, demonstrating its effectiveness in capturing and predicting
dynamic spatial-temporal traffic data. The main contributions of this study are as follows:

(1) Spatial-temporal relationship modelling. We propose an improved graph attention network (GAT v2)
[4] approach that dynamically extracts spatial relationships instead of relying on a static adjacency matrix used
in traditional graph convolutional networks (GCN) [5]. This approach enables the model to adapt to dynamic
changes caused by traffic rules and events, resulting in a more effective capture of spatial correlations in traffic
data.

(2) Long-term dependency handling. To improve the accuracy of long-term traffic trend prediction, we com-
bine gated recurrent units (GRU) and self-attention mechanisms. This enhances the model’s ability to explore
complex dependencies within the time series and more effectively capture long-term dependencies, which are
critical for accurate prediction of future traffic flows.

(3) Computational efficiency and performance. While incorporating advanced attention mechanisms and graph
attention mechanisms, we prioritize computational efficiency. We simplify the model structure and optimize the
algorithm to significantly reduce the computational resource requirements while still maintaining high-perfor-
mance predictions. This makes the model more practical, feasible, and scalable for real-world applications.

(4) Empirical study. We conduct extensive experimental validation on public datasets, and the results demon-
strate that our proposed model outperforms existing methods on both short-term and long-term traffic prediction
tasks. Moreover, the model exhibits excellent generalization ability and robustness, further confirming the effec-
tiveness and reliability of our approach.

The rest of the paper is organized as follows. Section 2 presents the research progress and related work.
Section 3 provides definitions of the basic concepts. Section 4 presents the specific structure and implementation
of the AMSTGCN model. Section 5 discusses the experimental validation and analysis of the results. Section 6
provides a summary and concluding remarks.

2 Related Work

With advances in science and technology, methods for traffic prediction have evolved from traditional statistical
models to modern machine learning and deep learning models. In the early stages, statistical methods such as the
Historical Average (HA) model and the ARIMA model were predominant. These models are typically applicable
to linear time series data, but their predictive power is limited for complex, high-dimensional, externally influ-
enced traffic data. In addition, the parameters of these methods often rely on expert knowledge for manual con-
figuration, rather than being obtained through data-driven self-learning training.

In the wave of artificial intelligence, various machine learning methods, including K-Nearest Neighbors (K-
NN) [6], Support Vector Regression (SVR) [7], Random Forest [8], and Bayesian Neural Networks [9] have been
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widely adopted in the field of traffic prediction. These techniques enhance prediction accuracy by exploring data
features in-depth and typically optimize performance through the combination of different algorithms. However,
they typically perform poorly in capturing long-term dependencies in traffic data, which is crucial for understand-
ing traffic patterns and trends [10].

The rise of deep learning has brought revolutionary advances in traffic prediction. CNN benefiting from their
remarkable achievements in image processing, has been applied in time series analysis. Researchers transform
the spatial-temporal characteristics of traffic flow data into two-dimensional matrices (similar to images) and use
CNN to extract features from these “spatial-temporal images” to achieve accurate prediction of speeds on exten-
sive road networks [11]. However, CNN lacks mechanisms to handle long-term temporal dependencies, which
may limit its effectiveness in predicting long-term trends.

To overcome the issue of long-term dependencies, Recurrent Neural Networks (RNN) have been introduced
in traffic prediction, as they possess the ability to handle sequential data with memory [12]. However, inherent
problems of RNN, such as vanishing gradients and exploding gradients, limit their performance in modelling
long sequences. Therefore, improved versions of RNN, such as GRU and Long Short-Term Memory (LSTM)
[13], have been more widely used in traffic prediction due to their structural advantages and stronger perfor-
mance in addressing these challenges.

Despite extensive exploration of traffic prediction methods, traditional techniques have focused on temporal
relationships, overlooking the significant impact of spatial dynamics on traffic patterns. To rectify this oversight,
GCNs have been increasingly utilized for modelling and extracting spatial interrelations. GCNs have inherent
strengths in representing non-Euclidean irregular graphs and capturing spatial correlations by aggregating infor-
mation from nodes and their surroundings, rendering them particularly suitable for traffic network analysis. As a
result, a surge of GCN-based traffic flow prediction models has surfaced, including T-GCN [14], STGCN [15],
and STSGCN [16], among others. To further refine the capture of intricate spatial-temporal dependencies, models
that incorporate attention mechanisms, such as GAT [17], have been developed and integrated into frameworks
like ASTGCN [18], GAGCN [19], STN-GCN [20], along with other approaches [21, 22]. These sophisticated
models combine Transformer, GCN, GRU, and additional architectures to achieve exceptional prediction capa-
bilities. Nonetheless, as the complexity of these models escalates with the number of modules and depth, so does
the computational intensity and the demand for resources.

Our study proposes an innovative model for traffic prediction that aims to combine the attention mechanism
with GCN and GRU to intensively explore the relationships between data in both temporal and spatial dimen-
sions. Our goal is to achieve prediction performance comparable to or even better than that of a complex model
with a relatively simple model structure. The proposed model demonstrates significant advantages in three key
aspects.

Firstly, in terms of spatial-temporal relationship modelling, we employ an improved Graph Attention Network
(GAT v2) instead of the traditional GCN approach based on a predefined adjacency matrix. GAT v2 can adap-
tively learn dynamic relationships between nodes, which is particularly suitable for traffic prediction as it can
accommodate spatial relation changes in the traffic network caused by regular variations or unexpected events.
Secondly, to address the issue of long-term dependencies in time-series data, our model combines GRU with
self-attention mechanisms. Compared to existing methods based on Long Short-Term Memory (LSTM), our
combined approach is not only more concise but also performs equally well in handling lengthy sequences, pro-
viding an effective alternative. Finally, we carefully consider the computational efficiency during the design of
our method, which is particularly important for resource-constrained scenarios. By optimizing the computational
workflow, our model reduces the need for computational resources while maintaining high prediction performance.
Compared to complex deep learning models, our approach demonstrates better practicality and scalability.

3 Problem Definition

Traffic flow refers to the movement and flow of vehicles, pedestrians, or goods in a transportation system. Traffic
flow is characterized by its volume, speed, and density. These features reflect the congestion level, mobility, and
efficiency of the transportation system. By managing and optimizing traffic flow, we can improve the operational
efficiency and travel experience of the transportation system. Attention mechanisms have the potential to extract
spatial-temporal relationships, so our study focuses on verifying their role in traffic flow prediction and evaluat-
ing the performance of designed models. To eliminate noise and perturbations caused by multiple input features,
we specifically choose to predict traffic speeds and conduct experiments to visually illustrate the prediction re-
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sults. Of course, our model is also applicable to predicting traffic volume and traffic density.
To capture the spatial correlation of traffic speed data, we define the road network as a graph structure.

G =(V,E,A), Where G represents the road network graph, E represents the edge, |V| =N is the number of

RNxN

road nodes, and A e is the adjacency matrix reflecting the connectivity relationship between nodes. The

elements may be denoted by 0, 1, and may also be measured by distances. X represents the input characteristic
Tp
matrix, X' represents the feature at the P-th time step. x ,\; denotes the input feature of the N-th node at the P-th

time step. Here the features can be multi-dimensional, that is, speed, flow, density, etc. X can be expressed as
Eq. (1):

1
1
1
2

T, X 'xl
X=X, X", X")=|. S (1

The traffic speed prediction problem becomes learning a function that can map the past P historical graphs to
the future Q graphs given the known graph structure, which can be expressed as Eq. (2):

[XOTD XSG Ly (XD, x ) (2)

4 Entire Structure

To effectively capture the spatial-temporal correlations in traffic data, this study proposes a spatial-temporal rela-
tionship extraction model called AMSTGCN. As shown in Fig. 3, this model consists of four core components:
input module, spatial relation extraction module, temporal relation extraction module, and output module. In the
input module, we perform a series of preprocessing operations on the raw traffic data to adapt to the requirements
of the subsequent prediction task. These preprocessing steps include padding the missing data, removing outliers,
normalizing the data, and partitioning the dataset to ensure data quality and efficient model training. The specif-
ic preprocessing method is detailed in Section 4.1 of the paper. For spatial relationship extraction, we utilize an
upgraded version of GAT called GAT v2. Compared to the original static attention mechanism in GAT, GAT v2
can dynamically capture attention relationships, which is a significant advantage for complex and dynamic traf-
fic road operation environments. The implementation details of this module are discussed further in Section 4.2.
The temporal correlation extraction module uses gated units to capture the dependencies in the time series and
combines the attention mechanism to compute the attention coefficients, thus revealing the temporal correlations
between the data accurately. The specific implementation of this part is explained in detail in Section 4.3. Finally,
in the output layer, we design a fully connected layer to generate multi-step prediction results. Through an organ-
ic combination of these four modules, the AMSTGCN model achieves high-precision traffic flow prediction.

4.1 Input Layer

In a traffic scenario, traffic features can include traffic speed, traffic flow, and lane occupancy. Any of these fea-
tures can be chosen for traffic flow prediction. Typically, in short-term traffic flow prediction, equidistant sam-
pling is done at intervals of 5 minutes, 10 minutes, or 15 minutes. However, traditional traffic data collectors are
prone to faults, such as communication issues, power supply problems, and road maintenance, which can result
in missing or abnormal data. To ensure the accuracy of subsequent predictions, the collected data needs to be re-
processed. For outliers and missing data, padding is done by computing the historical average. To make the input
a feature representation that can participate in the computation of the GAT network, the form of the input data
has been adjusted as Eq. (3):
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X, represents the N-th node feature and x]T;’ represents the feature value of the N-th node at the P-th time

step. X e R" is the node input feature that satisfies the GAT network operation and will be fed into the subse-
quent spatial relation extraction layer to obtain the spatial correlation and complete the node state update.

Spatial relation
extraction layer

Temporal relation
extraction layer

b | |
X’I},H D AL XTP+TQ

Fig. 3. Block diagram of the overall structure of AMSTGCN

4.2 Spatial Relation Extraction Layer

In the context of transportation, spatial relationships between road nodes are not only characterized by fixed
spatial locations but also exhibit dynamic dependencies that shift over time. Therefore, it is crucial to obtain dy-
98



Journal of Computers Vol. 35 No. 4, August 2024

namic and adaptive relations that can account for scenario variations. GAT introduces an attenuation mechanism
that allows each node to focus on its neighbours to varying degrees depending on their importance. This allows
GAT to capture interactions between nodes more accurately, instead of merely averaging or weighting neighbor-
ing nodes as is done in GCN. In addition, GAT supports multi-head attention, meaning that multiple attention
heads can be used simultaneously to learn the relationships between nodes. This approach enhances the expres-
sive power of the model and enables a better capture of complex relations within the graph structure. However,
reference [4] demonstrates that for a fixed set of GAT keys, the resulting attention coefficient remains relatively
invariant if attention is computed using different queries on this set of keys. In other words, the ordering of atten-
tion coefficients is the same for all nodes in the graph and independent of the query node. This implies that the at-
tention computation function is static and does not change with different queries. This is a problem with the GAT
model, which significantly reduces the expressive power of GAT. To obtain a dynamic attention mechanism, a
modified GAT model GAT v2 is used in this paper. The improvement of GAT v2 over GAT is shown in Eq. (4):

GAT e, = LeakyRelu(aT [ | ij])_

4)
GATv2 — ¢, =a" LeakyRelu (W -[x, || x,1)

Observing Eq. (4), we find that GAT v2 only modifies the order of the internal operations of GAT to play the
role of repairing the attention function. Readers interested in the specific proof procedure for the GAT v2 model
can refer to reference [4], which we directly cite and apply in this paper. Fig. 4 shows the complete computation-
al process of updating node features using GAT v2 as an example of node i.

x;1 x;z o x;'N

a!j 1 a!j 2 e az_; S

Fig. 4. Flowchart of GAT v2 attention mechanism computation
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GAT v2 can be implemented by Eq. (5) ~ Eq. (7).
(1) Calculate the attention coefficient.

¢, =" LeakyRelu (W -[x, || x,]) (5)

e; represent the attention value of node i relative to node j. o' and W is shared learning parameters. || de-

notes the vector concatenation. This expression means that when computing the attention coefficients, the linear
transformation is applied after concatenation, the nonlinear computation is done by the activation function, and
finally, the transformation is applied. In this way, it can be conditioned on the query node and finally implement
the computation of dynamic attention.

(2) The attention coefficients are normalized by softmax.

exp(e,)
a, =softmax(e,) =—=————— 6
/ T o) ©
(3) Node character updates.
xi’ = O.(ZjeN, a; 'ij) . (7)

x, represents the current feature of node i after the fusion of neighbourhood information. & is the activation

function.

To enhance the ability to obtain spatial correlations, a multi-head attention mechanism is used. Since the final
output is not the final result of our prediction, which is in the middle layer of the model, we employ a concatena-
tion method such as Eq. (8). Of course, the sum-and-average approach can also be adopted depending on the dif-
ferent tasks, as shown in Eq. (9).

=~

,_
X, =

LO’(Z a -W’%J ®)

JEN,

i

K

X = 0(%2 2 -W"xj] ©)

K=1jeN,

4.3 Temporal Relation Extraction Layer

In the time-related feature extraction module, we use a combination of GRU and self-attention mechanisms.
Compared to RNN and LSTM, GRU has a simpler structure and a memory mechanism, making it suitable for
long and short-term time series prediction. The self-attention mechanism can also extract correlations between
each time step.

The structure of the GRU is shown in Fig. 5. In GRU, the update gate and reset gate are two essential gating
mechanisms to control the flow and update of information. The role of the update is to determine the weight of
the hidden state of the input at the current moment and the previous moment, and at the previous moment to
decide whether the hidden state of the input needs to be updated. The role of the reset gate is to decide how the
input information at the current moment interacts with the hidden state at the previous moment.

GRU is calculated as shown in Eq. (10):
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zZ, =O'<Wz .[ht-l’xt]+bz).

r:=0(VK'[hwxz]+br). (10)
h, = tanh (W, -[1, ©h,,.x,]+b,)

h=(01-z)O0h, +z Oh

Where z, is the update gate, 7, is the reset gate, };t is the candidate hidden state, 4, is the hidden state at the
previous time step, /%, is the hidden state at the last time step, © is the Hadamard product, which stands for ele-
ment-wise multiplication. o and tanh are the activation function. W_, W_, and W_ are weight parameters. b_,

b.,and b, are the bias parameter.

______________________

5
0
5
A

Fig. 5. The basic structure diagram of GRU

After the GRU calculation, we can obtain the hidden states at all-time steps. To further obtain the long-range
dependence, we perform an attention calculation. The attention score calculation process is shown in Fig. 6, and
the calculation steps are shown in Eq. (11):

e, =tanh(W h, +b,)
a, = softmax(e,)

z= Zt: oh;

i=t—P+1

(11)

Where 4, is the hidden state output of the GRU, W, and b, are the learnable weight and bias parameters, re-
spectively.
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Fig. 6. Schematic of the attention mechanism followed by GRU

4.4 Output Layer

Our goal is to predict the traffic flow for Q steps into the future. Therefore, a fully connected layer is used in the
output layer to complete the dimensional transformation.

Y =Relu(W,Z +b,) (12)

The fully connected input is the attention value Z obtained by the time extraction layer, W, R"? is the

learnable parameter and the output of the output layer is the traffic feature of each node in the future Q time
steps.
4.5 Loss Function

During the model training process, the primary objective is to minimize the discrepancy between the observed
traffic speed and the predicted values generated by the model. We denote the true traffic speed Y and the predict-

ed traffic speed by ¥ . The loss function as Eq. (13):
Loss = HY - }9“ +AL,,, (13)

The first term in Eq. (13) is used to calculate the difference between the actual traffic velocity and the expected
velocity. The next component is the L2 regularization component, which is used to control the complexity of the
model and A is a hyperparameter.

5 Experiments

5.1 Datasets and Experimental Settings
To evaluate the performance of our model, we conduct experiments using the publicly available Loop Seattle
dataset. This dataset was collected by the Seattle Department of Transportation and consists of traffic speed data

from 323 sensor stations located on highways in the Seattle area (I-5, 1-405, I-90, and SR-520). The data spans
the entire year 2015 and is collected at a resolution of 5 minutes [23].
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In the experiments, we split the datasets using a ratio of 0.7:0.1:0.2, which means the Train dataset: Valid
dataset: Test dataset = 0.7: 0.1: 0.2. The data is normalized after partitioning and we use z-score normalization

method for normalization: X = (x — 1) / O, X,4 18 the maximum and X,,;, is the minimum of the sample data.

The model is developed using the PyTorch 1.9.0 deep learning framework. The specific configuration infor-
mation is as follows: CPU: Intel(R) Core(TM) 17-7800X, 24GB Graphics Card: GeForce RTX 3090, CUDA
version: 11.3.

5.2 Evaluation Metrics

To evaluate the performance of the AMSTGCN model, we use two evaluation metrics, namely Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE).

MAE =LY

noio

RMSE = /12":(%?)2 (15)
ni )

Y represents the true traffic speed, ¥ represents the predicted traffic speed. The smaller MAE and RMSE

Y- f‘ | (14)

demonstrate the better prediction performance of the model.

5.3 Experiment and Result Analysis

To evaluate the performance of the model, we performed a series of experiments, including comparing the pre-
dictive power of the model to the baseline model, analyzing the effect of different components on the model per-
formance, and measuring the computational time cost.

(1) Comparison experiments with baseline models.

Our task is to predict future velocities at the 3rd, 9th, and 12th time points using the known velocity values at
the past 12 sampling points. Given that the raw data is sampled at S-minute intervals, this amounts to predicting
the next 15, 45, and 60-minute velocities based on historical velocity data from the past hour. To evaluate the
model performance, we compare AMSTGCN with five baseline models. The comparison of the prediction per-
formance of the AMSTGCN model on the LOOP_SEATTLE dataset with the five baseline methods is presented
in Table 1.

Table 1. The prediction performance of the AMSTGCN model and other baseline methods on the LOOP_SEATTLE dataset

LOOP_SEATTLE

Methods 15min 45min 60min
MAE RMSE MAE RMSE MAE RMSE

HA 5.32 8.96 5.32 8.96 5.32 8.96
FNN 3.17 5.99 4.45 8.13 4.99 9.05
GRU 4.27 7.67 4.40 7.93 4.52 8.14
T-GCN 3.65 5.95 4.86 7.84 5.32 8.64
DCRNN 2.94 5.96 4.07 7.33 4.40 8.15
AMSTGCN 3.73 5.94 4.06 6.62 4.21 6.91
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HA: History Average Model. It predicts future observations based on the average value of past observations
over a certain period.

FNN: Fully connected Neural Network. We constructed the simplest three-layer fully connected neural net-
work to verify the prediction performance of the simple model.

GRU: Gated Recurrent Unit employs gate mechanisms to regulate information flow, mitigating gradient van-
ishing and exploding issues prevalent in traditional RNNS.

T-GCN [14]: Temporal Graph Convolutional Network exploits graph convolutions to discern node interactions
and GRUs to apprehend temporal dynamics.

DCRNN [24]: Diffusion Convolutional Recurrent Neural Network synergizes diffusion convolution with re-
current networks to model the spatial-temporal dynamics inherent to traffic networks.

Based on the experimental data, the AMSTGCN model shows significant advantages in spatial-temporal pre-
diction tasks. By combining the spatial correlation acquisition capability of GAT v2 with the temporal feature
extraction advantage of the attention mechanism, this model significantly improves the predictive performance
across different time scales. Specifically, AMSTGCN does not outperform DCRNN, FNN, and T-GCN when
predicting 15 minutes, but its MAE of 3.73 and RMSE of 5.94 are still quite impressive. This indicates that
AMSTGCN can provide competitive results even within a relatively short prediction window.

The advantage of AMSTGCN becomes apparent as the prediction horizon extends to 45 minutes. MAE was
reduced to 4.06 and RMSE was further reduced to 6.62, outperforming all compared models. This suggests that
AMSTGCN has a stronger ability to capture and exploit long-term dependencies in the data.

The advantage of AMSTGCN becomes even more prominent at the 60-minute prediction point. It achieves an
MAE of 4.21 and RMSE of 6.91, again showing the lowest error rate among all models. This significant perfor-
mance improvement is attributed to the deep spatial relationship mining capability of GAT v2 and the flexibility
provided by the attention mechanism in handling temporal information.

In summary, the AMSTGCN model not only maintains good performance in short-term prediction but also
demonstrates excellent capabilities in long-term prediction. This is driven by the carefully designed model struc-
ture, in particular the efficient integration of GAT v2 and attention mechanisms, which enables AMSTGCN to
accurately capture the crucial spatial-temporal dynamics in complex data. As a result, it achieves higher accuracy
and reliability in future predictions. This has practical implications and applications in domains that require accu-
rate spatial-temporal predictions, such as traffic management, weather forecasting, and urban planning.

The predictions for node 10 and node 320 in the LOOP_SETTLE dataset are displayed in Fig. 7 and Fig. 8,
which help to make the prediction results more understandable.

Prediction results at 15 minutes Prediction results at 45 minutes Prediction results at 60 mi;
70 70 70

60 604 60

50 504 504

30 30 30

J " |l|

1 ! 1
Ground Truth Ground Truth Ground Truth
—— AMSTGCN —— AMSTGCN —— AMSTGCN

20 l 20

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time Time

Fig. 7. Visualization of prediction results for node 10 in the LOOP_SEATTLE dataset
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Prediction results at 15 minutes Prediction results at 45 minutes Prediction results at 60 minutes
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Fig. 8. Visualization of prediction results for node 320 in the LOOP_SEATTLE dataset

(2) Performance testing of models with different components.

To deeply investigate the specific role of GAT v2 and the attention mechanism in spatial-temporal prediction
models, we conduct a series of comparative experiments. These experiments aim to assess the contribution of
each component in capturing spatial-temporal correlations through different combinations of models. Specifically,
we integrated and combined baseline models such as GAT, GAT v2, GRU, and Attention Mechanisms to con-
struct various hybrid models. These hybrid models are designed to reveal the unique value and synergistic impact
of each module in integrating spatial-temporal information. For ease of comparison and understanding, we pres-
ent the structure of different model combinations in Table 2. In addition, to simplify the exposition and aid the
reader’s understanding, we refer to the AMSTGCN model as G2GA.

Table 2. Models and naming of different combinations

Model name GG GGA G2G G2GA (AMSTGCN)

Combination GAT+GRU GAT+GRU+Attention GAT_v2+GRU GAT_v2+GRU+Attention

With these comprehensive tests, we aim to demonstrate the advantage of GAT v2 in spatial relation mining
and the effectiveness of the attention mechanism in extracting temporal sequence features. We also compare the
MAE and RMSE values predicted for different time points. The performance tests for the models with different
components are shown in Table 3.

We further examine the performance of different models at prediction intervals of 15, 30, 45, and 60 minutes.
At the 15-minute point, the G2G model performs slightly better than the others, but the AMSTGCN model is
also very close in performance. However, as the prediction duration increased, especially in the 60-minute fore-
cast task, we observed that the AMSTGCN model has lower MAE and RMSE values compared to the other three
models, with respective values of 4.21 and 6.91. This indicates that the AMSTGCN model is more effective in
capturing and exploiting complex patterns within spatial-temporal data, especially for long-term prediction. This
can be attributed to the integration of GAT v2 and attention mechanisms in the AMSTGCN model, which are
better equipped to capture spatial relationships and temporal sequential features in spatial-temporal data. GAT
v2 has the advantage of mining spatial relationships to effectively capture correlations between geographic loca-
tions, while the attention mechanism can weight information across different time steps in the temporal dimen-
sion to extract salient features from the time series. With this combination, the AMSTGCN model can predict
future spatial-temporal changes with greater accuracy. This has significant practical implications for applications
in various fields such as traffic flow prediction, weather prediction, and human motion prediction.

Overall, through a comprehensive comparison and analysis of different models, we have validated the spe-
cific role of GAT v2 and the attention mechanism in spatial-temporal prediction models. As a hybrid model
integrating these two components, the AMSTGCN model demonstrates superior performance in the long-term
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spatial-temporal prediction task. These findings provide valuable references and guidance for further research
and applications of spatial-temporal prediction models. The visual comparison results for MAE and RMSE are
shown in Fig. 9.

Table 3. Performance testing of models with different components

LOOP_SEATTLE

Methods 15min 30min 45min 60min
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
GG 3.76 5.92 3.96 6.37 4.12 6.72 431 7.10
G2G 3.67 5.83 3.90 6.36 4.09 6.77 4.27 7.10
GGA 3.72 5.95 3.89 6.33 4.07 6.68 4.24 6.98
G2GA
(AMSTGCN) 3.73 5.94 3.90 6.29 4.06 6.62 4.21 6.91
43
42 —*
—i—
4.1 +
Ll =
[ 40 4 o
E 2
3.9 4
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Fig. 9. Changes in performance metrics of different models for prediction tasks of different time lengths

(3) Model training time measurements.

To demonstrate the computational performance advantage of AMSTGCN, we compare its training time with
different models. Fig. 10(a) illustrates the comparison of AMSTGCN’s training time with four baseline models.
We can see that AMSTGCN has a relatively short training time of 67.289 seconds. By comparing the results, we
can observe that while the training time of AMSTGCN is longer than FNN and GRU, it is significantly shorter
than DCRNN, which requires the most training time. In addition, AMSTGCN also has a slightly shorter training
time compared to T-GCN. This indicates that even though AMSTGCN is more complex than some simple mod-
els like FNN, it is more efficient in handling complex graph data.

Fig. 10(b) illustrates the training time with different components. When comparing the number of training
epochs of different models, we find that the G2G model has a significant computational efficiency advantage
over the GG model. Specifically, the training time of the G2G model is 67.288s, while the training time of the
GG model is 72.125s. This indicates that the GAT v2 version is more efficient than the original GAT version,
saving approximately 4.837s of training time without introducing the Attention mechanism. When we introduce
the attention mechanism into both GG and G2G models, we observe an increase in training time. This is because
the attention mechanism adds complexity and computational overhead to the model. However, even after incor-
porating the Attention mechanism, the training time of the AMSTGN model remains highly close to that of the
G2G model with only a 0.001s increase. This minor increase is negligible and suggests that the AMSTGN model
maintains strong computational efficiency while improving model performance with the Attention mechanism. In
contrast, the training time of the GGA model is significantly increased to 74.938s, which is an increase of 2.813s
compared to the GG model. This increase in time may be attributed to the lower computational efficiency of the
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GAT version when dealing with the Attention mechanism.

Therefore, we can conclude that the GAT v2 version provides higher computational efficiency under the same
conditions, while the AMSTGN model maintains acceptable computational efficiency while incorporating the
Attention mechanism.
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Fig. 10. Changes in performance metrics of different models for prediction tasks of different time lengths

We can conclude that the advantage of AMSTGN lies in its ability to capture temporal dependencies and
graph structural features, which allows it to maintain relatively high accuracy while effectively controlling the
computational cost. Therefore, AMSTGCN should be a relatively good choice if the application scenario requires
taking into account the dynamic nature of the graph and the complex interactions between nodes.

6 Conclusions

This study presents a novel model that integrates GAT v2 and GRU to address the core issues in traffic predic-
tion. This model goes beyond the limitations of traditional GCN in modelling spatial-temporal relationships.
By adaptively learning the dynamic relationships between nodes, it effectively handles spatial relation changes
caused by regular variations or unexpected events in the traffic network. Moreover, the model combines the
self-attention mechanism and GRU to elegantly address the problem of long-term dependencies in time series
data. Moreover, the model is designed with a focus on computational efficiency, optimizing the computational
process to adapt to resource-constrained real-world applications while maintaining strong predictive perfor-
mance. Experimental results on public datasets validate the superior performance of the proposed model com-
pared to existing methods on short-term and long-term traffic prediction tasks and also demonstrate its excellent
generalization ability and robustness.

Future work can further expand and deepen the achievements of this study in several directions. First, explore
the integration of this model with different types of spatial-temporal data modelling approaches, such as introduc-
ing multi-scale analysis or considering more complex spatial-temporal relationships. Second, given the diversity
of real-world traffic scenarios, the adaptability and robustness of models remain crucial research topics that can
be tested and improved by introducing more diverse datasets and scenarios. Finally, as computational resources
continue to evolve, exploring how to leverage parallel computing and distributed systems to tackle larger-scale
traffic prediction problems is also an essential direction for future research.
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ABSTRACT Due to the complexity and dynamics of transportation systems, traffic prediction has become
a challenging task. The accuracy of prediction is influenced by the spatial-temporal correlation within the
traffic system. Previous approaches mainly relied on a pre-defined static adjacency matrix combined with
graph convolutional neural networks to capture spatial correlation, neglecting the dynamic relationships
between nodes over time. In this study, we propose a novel prediction model called the spatial-temporal
dynamic graph convolutional neural network (STDGCN). By fusing node embeddings and input features,
we obtain a new node representation that incorporates both static and dynamic features. To capture the
dynamic relationships, we introduce a similarity calculation to construct a dynamic adjacency matrix.
This matrix contains rich spatial relationships that serve as a reference for subsequent prediction tasks.
We further employ Graph Convolutional Networks (GCN) and Gated Recurrent Units (GRU) to capture the
spatial-temporal correlation. By combining these components, we establish a comprehensive traffic volume
prediction model. To evaluate the performance of our proposed method, we conduct experiments on two
real datasets. The experimental results demonstrate that our model achieves state-of-the-art performance in
accurately predicting traffic volumes.

INDEX TERMS Traffic prediction, spatial-temporal dynamic graph, dynamic adjacency matrix, graph
convolutional neural network.

I. INTRODUCTION
Traffic prediction is an essential and integral part of
intelligent transportation systems, playing a critical role in
optimizing transportation efficiency. Since advanced tech-
nologies such as data mining, machine learning, and artificial
intelligence can effectively collect and analyze historical
traffic data, they are widely used in the field of traffic
prediction [1], [2]. There is no doubt that accurate traffic
prediction results can provide valuable travel references for
traffic participants, which invisibly enhances the overall
efficiency of traffic operations and ultimately improves traffic
efficiency [3].

Traffic prediction is a multidimensional problem that
mainly involves spatial and temporal dimensions, as well
as feature dimensions. The spatial-temporal dimension takes

The associate editor coordinating the review of this manuscript and

approving it for publication was Anandakumar Haldorai

into account the variability of traffic volume at different times
and locations. To accurately predict traffic conditions, both
temporal and spatial dimensions need to be modeled and
analyzed. The feature dimension covers various factors that
affect traffic conditions, such as road network topology, road
conditions, special events, and weather changes. By consid-
ering these features in a comprehensive way, we can have a
more comprehensive understanding and prediction of traffic
conditions. Changes in the spatial-temporal dimension can
better reflect the underlying patterns of traffic flow changes,
so our study also focuses more on the analysis and modeling
of the spatial-temporal dimension.

Traffic data are commonly classified as spatial-temporal
data, which implies the presence of both temporal depen-
dencies and location-based dependencies among the data.
Additionally, these data exhibit spatial-temporal relationships
that are subject to variations over time. In early studies,
statistical methods such as the Historical Average(HA)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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model [4], Vector Auto Regressive model(VAR) [5] and Auto
Regressive Integrated Moving Average(ARIMA) model [6]
were used for prediction. These methods are based on the
assumption of smoothness. They place greater emphasis on
temporal correlations in traffic data while disregarding the
impact of spatial correlation between transportation systems
on on-road operational conditions [7]. Furthermore, the
parameters utilized in the modeling are typically determined
based on expert knowledge rather than being obtained
through iterative optimization. As a result, the performance
may be sub optimal when dealing with complex, high-
dimensional non-linear traffic data.

Machine learning methods such as K-Nearest Neighbor
(KNN) [8], K-Means [9], and others have also been employed
for traffic prediction. However, it is worth noting that these
methods heavily rely on historical data. In [10], the study of
traffic prediction also incorporates the use of Convolutional
Neural Network (CNN). However, it is important to note
that CNN are primarily utilized for capturing temporal
correlations and are limited to processing standard European
graph data. In [11], the study of traffic prediction often
utilizes Recurrent Neural Network (RNN) in deep learning,
such as the Long Short Term Memory (LSTM) [12],
GRU [13], and other variants. These methods demonstrate
superior performance in capturing temporal correlations and
exhibit effectiveness in short-term time series prediction.
However, when applied to traffic data that incorporates spatial
information, standalone RNN methods frequently overlook
the significance of spatial dependencies. The absence of
spatial information can lead to a decrease in the accuracy of
predictions.

Moreover, in real-world scenarios, the specific location
of the data acquisition device also has an impact on the
completeness and comprehensiveness of the collected data.
To address this, various integrated deep learning models
have been applied in traffic data prediction. In [14], a robust
deep learning architecture based on stacked Sparse Auto
Encoders (SAEs) is proposed to accurately estimate the traffic
flow across the entire network using deployed sensor sets.
In [15], a deep residual neural network is introduced to
reliably forecast the origin-destination (O-D) data of the
entire network based on the flow of links. The aforementioned
methods are suitable for specific traffic prediction scenarios,
but they may not pay sufficient attention to the effects of
dynamic spatio-temporal correlations.

The traffic network can be naturally viewed as a graph
structure. Given the growing popularity of GCN, they have
been extensively utilized in the domain of traffic prediction
research [16]. Previous studies on traffic road network
structures have predominantly relied on the distance between
road nodes as a proxy for representing the spatial correlation
between nodes. While this approach is simple and convenient,
it fails to capture the dynamic nature of traffic data on road
nodes during different time periods or special events, which
deviates from real-world traffic scenarios [17]. As shown
in Fig. 1, the spatial-temporal correlation of traffic data
among residential, school, and commercial areas cannot be
solely attributed to spatial proximity. It is also profoundly
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FIGURE 1. Dynamic relationships in traffic scenarios.

influenced by the functional attributes associated with each
area. For instance, on weekdays, there is a significant
correlation between schools and residential areas, which
naturally diminishes on non-working days. In addition, the
occurrence of public gatherings such as sporting events and
concerts can result in transient traffic congestion in the area.
Such congestion can even extend to remote regions, leading
to variations in spatial dependencies between nodes. Conse-
quently, considering static distances alone is insufficient to
adequately capture the complex spatial dependencies.

To improve prediction accuracy by capturing more pro-
found and evolving spatial dependencies, we present a novel
model called Spatial-Temporal Dynamic Graph Convolu-
tional Neural Network (STDGCN). The main contributions
of our study can be summarized as follows:

(1) We propose a joint prediction model based on GCN
and GRU, where the generation of the dynamic adjacency
matrix is the key link of the model. The input features
and node information are encoded and fused, respectively,
and then processed by the GRU to obtain the hidden states
at different time steps. After fully connected processing
of the hidden states at each time step, a cosine similarity
calculation is performed to obtain the dynamic adjacency
matrix containing rich spatial-temporal information. It more
effectively describes the spatial dependencies and dynamics
of the road network and improves the predictive performance
of the model.

(2) We conduct thorough experiments on three publicly
available datasets to demonstrate the efficiency of our
proposed model in predicting traffic. Our model outperforms
7 benchmark baselines, exhibits a substantial reduction in
prediction error, and achieves the highest level of accuracy
in traffic prediction.

The rest of the paper is organized as follows. Section II
reviews the development of traffic prediction methods and
related work. Section III provides an instantiation analysis of
temporal and spatial correlations in traffic data. Section IV
presents the specific details of our designed model. Section V
evaluates the designed model on two real-world traffic
datasets, performs a comparison analysis with baselines, and
performs ablation experiments. Finally, Section VI concludes
the paper and sets out directions for future research.
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Il. RELATED WORK

GCN is suitable for non-standard graph structures [18], while
road network is a natural graph structure, so it has obvious
advantages to use GCN to process traffic data. In the past
few years, a growing number of research works have utilized
the fusion of GCN and RNN for traffic prediction. The
core idea of these models is to use GCN to obtain spatial
correlation of traffic data and RNN, GRU, and LSTM to
obtain temporal correlation [19]. Models such as temporal
convolutional neural networks (TCN) [20] and diffusion
convolutional neural networks are employed to capture time-
dependent relationships, addressing the challenge of gradient
vanishing or exploding in RNN. In the aforementioned
approaches, the spatial correlation information derived from
GCN is predominantly represented by a predefined adjacency
matrix, and the correlations between road nodes are measured
by distance weights. In this approach, the transportation
network is treated as a static graph that captures only fixed
spatial correlations. However, it overlooks any dynamic
relationships that may arise from transient congestion,
traffic accidents, and other factors [21]. As mentioned
in [22], the traffic flow is modeled as a diffusion process
on a graph. To capture dynamic spatial correlations, the
authors used a combination of diffusion convolutional neural
networks and random walk methods. As described in [23],
an adaptive adjacency matrix is constructed by utilizing node
embedding. This adaptive matrix, in combination with a dif-
fusion convolutional neural network, effectively captures the
dynamic correlation between nodes. All the aforementioned
models take note of the dynamic and changing character
of the spatial-temporal graph. Dynamic graphs have been
further investigated in several subsequent models, including
ASTGCN [24], STSGCN [25], AGCRN [26], and EST-
Net [27]. The ASTGCN and STSGCN models introduced
the attention mechanism to enhance their performance. In the
AGCRN model, a parameter-adaptive generative approach
was employed to generate dynamic graphs. On the other
hand, the ESTNet model utilized a multilayer graph structure
fusion method to obtain dynamic correlations. The above
methods perform well in extracting dynamic spatial-temporal
correlations, but most of them build complex models at
the expense of efficiency, such as introducing an attention
mechanism that increases the model parameters. Drawing
on previous studies, we use a node embedding approach to
obtain static information on the graph structure. Through
information fusion, GRU coding and similarity calculation,
the adjacency matrix is generated that contains static and
dynamic information. Finally, with the combination of GCN
and GRU, temporal and spatial information can be captured
simultaneously. The full model eventually enables accurate
traffic prediction.

Ill. CORRELATION ANALYSIS

Spatial and temporal correlations are crucial factors in
achieving accurate predictions. To gain a more intuitive
understanding of the spatial-temporal correlations of traffic
data, we perform a comprehensive correlation analysis in
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FIGURE 2. Schematic of the lanes at the intersection.

this section. This analysis will provide a solid theoretical
foundation for subsequent studies.

A. TEMPORAL CORRELATION ANALYSIS OF TRAFFIC FLOW
Traffic flow represents a time series data that is affected by
various factors such as people’s travel habits, holidays, and
working hours. It exhibits a periodic character. In Fig. 2,
we observe an intersection on a main road in a western
Chinese city. Traffic flow detectors on each road are labeled
A through H, and arrows in the figure indicate the direction
of the road.

Fig.3. illustrates the traffic flow in the section of the
road where detector A is located, sampled at intervals of
5 minutes over a two-week span. It is evident that the
traffic flow exhibits clear weekly and daily periodic patterns.
In addition, distinct traffic patterns can be observed between
work days and holidays. However, it is commonly observed
that the predicted data exhibit a stronger correlation with the
proximity traffic data in the proximity time interval compared
to the weekly or daily proximity traffic data. We perform an
analysis of traffic flow correlations at neighboring times.

As an example, we consider the traffic flow data collected
by detector A on January 8, 2018 as shown in Fig.3. We set
T=12, which implies that we analyze the correlation between
the current data and the data from the preceding 12 adjacent
sampling points (one hour of data). The analysis reveals
a robust correlation between the current time and the six
neighboring observation points. However, the correlation
gradually weakens as the time interval increases. This
observation suggests that the variability in traffic flow is
significantly influenced by the neighboring traffic flow.

B. SPATIAL CORRELATION ANALYSIS OF TRAFFIC FLOW

To study the spatial correlation of traffic flows, we employ the
Pearson correlation coefficient as a measure of the correlation
between time series. This coefficient is a commonly used
statistic to quantify the strength and direction of a linear rela-
tionship between two variables. The formula for calculating
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FIGURE 4. Spatial correlation coefficient matrix of one day’s traffic flow
data.

the Pearson correlation coefficient is as follows [28]:

_cov(X,Y)  E((X —px) (Y — puy))
= =

pxY o))

0x0y

ux, Ly, ox, oy are the mean and variance of X and Y,
respectively.

Traffic flow data from detectors A, B, D, E, and G in Fig. 2
are selected for analysis of spatial correlations over a span
of one day. From Fig. 4, it is evident that the correlation
coefficient between detectors B and E is 0.98, indicating a
high level of correlation between these two detectors. The
correlation coefficient between detectors A and G is 0.89, the
lowest correlation coefficient.

From the analysis, it has been observed that the strong
correlation between detectors B and E can be attributed to
their shared traffic direction. In addition, it was found that
detector B is located downstream of detector E on the same
segment. These factors contribute to the strong correlation
between the traffic flow data recorded at detectors B and
E. Upon closer analysis, it has been established that the
weaker correlation between segments A and B compared to
segments B and E is due to the inconsistency in their traffic
directions. Although segments A and B are adjacent in spatial
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location, the traffic flow data collected from these segments
exhibit a lower degree of correlation. This can be attributed
to the fact that they have different traffic directions, which
leads to variations in the traffic patterns and eventually to
weaker correlations between the two segments. It has been
established that the detectors A and G do have the lowest
correlation coefficients. This can be attributed to several
factors. First, the road segments in which detectors A and G
are located are not adjacent, which means that they may be
affected by different traffic conditions and modes. Second,
the road directions in these segments are not the same, further
contributing to the variability in the traffic flow data. Finally,
there is no upstream-downstream relationship between these
segments, which affects the consistency of the traffic patterns
and leads to weaker correlations. Together, these factors result
in the lowest correlation coefficient between detectors A and
G. This correlation analysis reveals that the traffic flow at a
particular node is influenced by numerous factors, including
spatial location and traffic direction. It is crucial to consider
these factors, among others, when constructing traffic flow
models.

Through the instantiation analysis of spatial-temporal
correlations, we have gained a deeper understanding of
the relationship between spatial-temporal correlations and
influencing factors in traffic data. The analysis results
further confirm that in order to achieve accurate traffic
prediction, it is necessary to delve into the spatial-temporal
correlations of traffic data and fully consider the various
factors. More accurate prediction results can only be obtained
by considering a comprehensive range of scenarios. Our study
focuses precisely on exploring dynamic spatial-temporal
relationships in depth.

IV. METHODOLOGY
Before introducing the STDGCN model, we first introduce
the notation and basic concepts that will be used in the future.
Traffic forecasting is a multivariate time series forecasting
problem, which refers to predicting the future trends of
traffic conditions in a certain location or region by analyzing
historical data. In general, we define a road network as a graph
G = (V,E,A), G represents the graph structure, where V
is the set of nodes, |[V| = N, N is the number of nodes,
E is the set of edges, and A € RV*V is the adjacency
matrix of the graph G [29]. Traffic detectors usually detect
multiple features such as flow, vehicle speed, and lane
occupancy. We denote the features number by F' Then, we use
X e RT*N*F denote a feature tensor on a graph, T represents
the input time series length. We use X; € RV > to denote the
d th feature value of the n th node at some time step. X can
be represented by X; as X = {Xi, X, -+, X7}.The traffic
flow forecasting problem can be defined as (2), predicting the
traffic flow in the next time step using the data from the past
time slice.

[XTP+1’ XTP+27 .. -XTI)+TQ] :f(Ga (le X27 R 'XTP)) (2)

where Tp represents the historical time steps, T represents
the future time step to be predicted and f is the mapping
function. The essence of the traffic flow forecasting problem
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is to find this nonlinear mapping relationship and complete
the prediction of future data using historical data.

Fig.5 illustrates the complete structure of STDGCN, which
consists of three main components: input encoding module,
dynamic adjacency matrix generation module, and prediction
module. The input encoding module is responsible for
obtaining new encoding vectors that capture valuable spatial-
temporal relationships. The dynamic adjacency matrix
generation module generates a dynamic adjacency matrix
by computing the similarity. Finally, the spatial-temporal
relation extraction module combines GCN and GRU to
extract spatial-temporal relations and achieve accurate traffic
prediction. The structure of STDGCN effectively handles
spatial-temporal relationships in traffic data, thus improving
the accuracy and efficiency of traffic prediction. Specific
implementation methods are detailed in the subsequent
sections.

A. INPUT ENCODING MODULE

In traffic prediction, the input information generally includes
raw spatial distance information between nodes, node fea-
tures, and other additional information. Raw spatial distance
refers to the straight line distance between road nodes, which
can be used to define the adjacency matrix of a road to
reflect the connectivity between nodes. Node features include
detectable attributes in the traffic network, such as traffic
flow, travel speed, lane occupancy, etc. Other additional
information includes weather conditions, public events and
other factors that affect traffic conditions. By encoding
road nodes, we can obtain node embeddings that capture
static structural information of the traffic network, especially
spatial relational information. By encoding the input features
and other feature information, we can obtain their low-
dimensional vector representations in the latent space. The
encoded information obtained in the initial encoding is fused
and fed into the GRU for quadratic encoding, which enables
us to obtain hidden states at different time steps containing
valuable spatial-temporal information.

Previous studies have shown that it is feasible to construct
adjacency matrices through node embeddings to capture
static spatial relationships. Hence, we utilize node embedding
to deduce the relationship between nodes. According to
the traffic road situation, the method of graph embeddings
node2vec [30] is used to embed the road structure information
into an L-dimensional vector.

Node embeddings are initialized with learnable parame-
ters, randomly, M € RV *L, where each row in M represents
a node embedding, N represents the number of nodes, and
Lrepresents the dimension of the node embedding. m; € R"
represents the node embedding vector of each node.

The input features of nodes can be represented as a
X € RT*N>F ‘where T is the number of time steps, N is the
number of nodes, and F is the feature dimension. For other
information related to nodes, such as weather conditions or
public events, we can encode them for later use. In our study,
we focus on the impact of dynamic spatial information on the
prediction results. Therefore, at this stage, we do not consider
introducing additional information for the time being.
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We concatenate the node embeddings vector and the
input feature encoding vector at a particular time step to
obtain the input to the model as follows: X;, = [X]||M],
M e RV*L M e RV*F This input encompasses both static
spatial information and dynamic feature information. It is
subsequently passed through the GRU for encoding, which
helps capture the dependencies between input timesteps. The
computation process is represented as:

re = o (W-(M|[X))
7z = o (W,(M|IX))

~

hy = tanh (W, X + Uy, (r; © M))
hh=(0—-2)OM+z0h 3)

W, W, Wy, and Uj, denote weight matrices that require
updating, © represents the Hadamard product, and tanh
denotes the activation function. The output /; contains both
static and dynamic information.

B. DYNAMIC ADJACENCY MATRIX GENERATION MODULE
To fully leverage spatial correlations in road traffic, we opt to
use GCN to construct our subsequent prediction model. GCN
is capable of capturing spatial relationships by aggregating
information from neighboring nodes. The amount of infor-
mation provided by the adjacency matrix directly affects the
ability of GCN to extract spatial information. Hence, we show
the process of generating the dynamic adjacency matrix
in the dynamic adjacency matrix generation module. First,
the hidden state at each time step, obtained from the input
encoding module, is mapped through a fully connected layer
to obtain a vector representation of each node. We denote the
transformed vector by V, which is expressed as follows:

V = Fully connected(h,), V € RT>N

Then, we can get i, isj € V, Wy, 4e,j can also be
treated as the low dimensional embedding vector for node n;
and n; at the t-th time step. We exploit cosine similarity [27] to
define the dynamic correlations8(n;, nj, t) between u; ; and
We.j- B(ni, nj, t) can be calculated as follow:

Mt,i* Mt,j
el - e

B reflects the relations between nodes and contains both
static and dynamic information on the graph. Our goal in
solving B is to use it to represent the dynamic adjacency

matrix.The dynamic adjacency matrix A4 can be calculated
by

B, nj, 1) = 4

o]
Aalisjl = 7 2, Blnismy. 1) ®)

Tp represents the historical time steps.

The dynamic adjacency matrix is constructed by inte-
grating various information codes. In contrast to the static
adjacency matrix, which is defined based on distance, Ay
incorporates both spatial and temporal information between
nodes over time. This abundant information is valuable for
predicting future traffic patterns.
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C. SPATIAL-TEMPORAL RELATION EXTRACTION MODULE
In this section, we replace the adjacency matrix in the original
GCN model with the dynamic adjacency matrix generated
in the previous step. The output of the GCN is then fed
into the GRU model. By rewriting the GRU, we enhance the
model’s ability to capture both temporal and spatial features.
Ultimately, this leads to accurate predictions.

We use a GCN with two layers to learn spatial features from
traffic data.

F(Aq, X;) = o (AqRelu(AgX, Wo)W1) (©6)

where X; represents theI featureI matrix,Ay is dynamic adja-
cency matrix. Ag=D"1A,D2 represent the normalization
process.Ad = Ay + Iy, Iy is the identity matrix. D is the
degree matrix. Wy and W are weight matrix.

We used GCN to modify GRU in order to obtain both
temporal and spatial correlations. The modified expression

for GRU is as follows:

ry = U(Wr[g*e’ ht—l] + br)

up = o(Wylg,g, he—11+ by)

¢ = tanh(We[g.9, (rr © hy—1)] + b.)

h=u Oh—1 +(1 —u)Oc @)

g.p represents the graph convolution process, this is
equivalent to (6).

Following the aforementioned stages, we have successfully
constructed the STDGCN network. This network is capable
of capturing the temporal, geographical, and spatial-temporal
relationships present in the provided traffic data. In the
experimental phase, we will assess the effectiveness of the
network using real-world traffic statistics.

V. EXPERIMENTS

A. DATA DESCRIPTION

In this section, we aim to evaluate the effectiveness of our
model using two publicly available datasets. The first dataset,
METR_LA, consists of traffic speed data collected using
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TABLE 1. Datasets-specific information.

Datasets PEMSD4 METR LA
Location Seattle Area, USA t(;sAAngclcs Clotriy
Number of Sensors 307 207

Sample interval Every 5 minutes Every 5 minutes

Characteristics Flow, occupy, speed  Vehicle speed
Total amount of Jan. 1, 2018 - Mar. 1, 2012 - Jun. 27,
data Dec.31, 2015 2012

the Loop Detector from 207 sensors located on freeways
in Los Angeles County. The data are recorded at 5-minute
intervals [22]. The second dataset, PEMSD4, contains flow,
occupancy, and speed data from 307 detectors placed on
California highways. The data spans 59 consecutive days,
starting from January 1, 2018, and is recorded at 5-minute
intervals [22]. Although the PEMSD4 dataset provides three
types of traffic features, we have chosen to focus on traffic
speed as the prediction objective in both datasets. This
decision was made to ensure fairness in evaluating model
performance and to provide a clear basis for comparative
analysis. By using the same features for prediction, we can
accurately compare the performance of the models on
different datasets and eliminate any interference caused by
differences in feature selection.

In TABLE 1, we provide the details of the datasets. We use
historical speed data from the past hour to predict the traffic
speed for the next hour. Specifically, we use the data from
the past 12 time steps to predict the data for the next 12 time
steps. It is important to note that our model can also be
applied to predict other types of traffic metrics, such as traffic
volume and road occupancy. By utilizing historical data for
prediction, we can provide valuable insights about future
traffic conditions.

In subsequent trials, we split the dataset into three sections:
training set, validation set, and test set, with a ratio of
0.7:0.1:0.2. This partition allows us to train the model on
a large portion of the data, validate its performance on a
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separate set, and finally evaluate its generalization ability on
unseen data in the test set.

B. EVALUATION METRICS

To evaluate the effectiveness of the model, we selected mean
absolute error (MAE) and root mean square error (RMSE)
as performance assessment metrics. The calculation formulas
for these metrics are as follows:

IS .
MAE = -3 [y - Jil

i=1

/1
— [ = )2
RMSE = o E i — yi) (3)

where y; and y; denote the predicted and true traffic flow or
speed at the i-th point in time t, respectively. Lower MAE and
RMSE values, in general, indicate higher performance of the
model in predicting the target variable [31].

As the loss function, we used mean squared error (MSE).

1 n
L =—§ =) 9
088 ”i=1(y Vi) )

C. PARAMETERS SETTING

We implemented the proposed model using PyTorch
1.9.0 and performed all experiments on a cloud server. The
server was equipped with an Intel(R) Xeon (R) Platinum
8358P CPU @ 2.60GHz, an RTX 3090 (24GB) GPU, and
80GB of memory. During the training process, we used the
Adam optimizer with a learning rate of 0.001. The model
was trained with a batch size of 64. To prevent overfitting,
we incorporated early stopping in the training procedure.

D. BASELINES

HA: Historical average models are the most basic statistical-
based models that use statistical data from a large number
of historical eras as observations. These models compute the
arithmetic mean of the historical data and use it as a prediction
value for the following time period.

FNN: A feed-forward neural network with three hidden
layers has been created and used to evaluate the performance
of a simple neural network in traffic prediction.

T-GCN: Spatial correlations are captured by the GCN,
while temporal correlation links are obtained by the GRU
using the GCN computation results.

DCRNN: The traffic process is viewed as a graph-based
diffusion process. It uses an upgraded GRU to capture
temporal correlations and a diffusion convolutional neural
network to capture spatial correlations.

Graph WaveNet: It captures spatial correlations through
a constructed adaptive adjacency matrix and a predefined
graph structure, and temporal correlations are obtained using
diffusion causal convolution.

ASTGCN: Spatial-temporal graph convolutional networks
based on attention mechanisms establish a temporal-based
attention mechanism and a spatial-based attention mecha-
nism, respectively, to further extract temporal and spatial
correlations.
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AGCRN: The innovation of the adaptive graph convolu-
tion recursive model lies in learning the adaptive parameters
of each node through the Node Adaptive Parameter Learning
(NAPL) and Data Adaptive Graph Generation (DAGG)
modules, and ultimately obtaining the adaptive adjacency
matrix.

E. RESULTS AND DISCUSSION

We conducted comparative experiments between STDGCN
and seven baseline models on the METR_LA and PEMSD4
datasets. In the experiment, we use the data from the past
12 time steps to predict the traffic speed values for the next
12 time steps. TABLE 2 shows the errors of the different
models in predicting future values of the 3rd, 6th and
12th time steps on the two datasets, that is, the errors in
predicting traffic speed values at 15, 30 and 60 minutes.
These values will be used to evaluate the performance of the
model.

Analyzing the results in the table carefully, we can draw
the following conclusions:

Of all the approaches, the conventional statistical method
HA performs the lowest. The main reason for this is that
HA ignores geographical relationships in the traffic situation.
It relies solely on historical data obtained through sliding
windows, which limits the collection to only temporally
relevant data. Moreover, we observe that the predictions
generated by HA remain unchanged when the prediction
range is enlarged. This suggests that HA lacks the ability
to capture and incorporate spatial dependencies and fails to
adapt to longer-term forecasting scenarios

FNN, as a basic neural network technique, has the
capability to simulate more complex and nonlinear traffic
predictions. It performs better compared to conventional
prediction methods. However, FNN is limited in its ability
to extract only time-dependent relationships from traffic
data. The necessity of propagating the data for long-term
prediction also results in a lack of sequential links between
the data, which ultimately reduces the accuracy of the
prediction. While FNN may be effective for short-term
prediction, it may struggle to capture long-term patterns and
dependencies in the data.

T-GCN, DCRNN, Graph WaveNet, ASTGCN and
AGCRN are all GCN based models specifically designed for
traffic prediction. As an excellent baseline model, it achieves
excellent performance on our two selected datasets. These
models utilize a graph structure to represent road traffic
networks, which is more suitable to capture complex
relationships and dependencies in traffic data. DCRNN
combines traffic flow and diffusion process to model spatial
dependencies, which improves the ability of the model to
obtain spatial information. Graph WaveNet combines the
WaveNet structure with an adaptive adjacency matrix, which
aims to adaptively update the adjacency matrix and mine
spatial correlations at a deeper level. ASTGCN incorpo-
rates an attention mechanism to explore spatio-temporal
correlations in the data more comprehensively. On the
other hand, AGCRN utilizes an adaptive adjacency matrix,
which obtains a dynamic adjacency matrix by updating
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TABLE 2. Performance of different models on METR_LA and PEMSD4 datasets.

METR_LA(15/30/60min)

PEMSD4(15/30/60min)

MODEL
MAE RMSE MAE RMSE

HA 10.92/10.92/10.92 22.42/22.40/22.40 12.44/12.44/12.44 25.05/25.05/25.05
FNN 5.70/6.10 /8.49 8.12/10.54/13.52 9.69/10.58 /12.82 21.59/23.72/28.60
T-GCN 4.76/ 5.07/7.03 7.79/9.59 /11.67 7.69/9.17/12.33 19.54/22.91/29.99
DCRNN 5.36/6.84/6.82 7.34/ 8.78/10.22 6.87/7.57/8.76 17.34/18.75/21.22
GraphWaveNet 5.36/6.84/6.81 542/ 6.42/7.42 7.36/7.84/8.82 18.04/19.04/20.89
ASTGCN 5.22/6.54/ 8.18 8.03/9.28 /10.69 7.61/8.03/8.85 18.56/19.55/21.21
AGCRN 9.33/9.88/10.37 548/ 6.54 /1.50 6.64/6.99/7.48 17.19/18.04/19.17
Our model (STDGCN) 4.56 /5.02/6.91 545/ 6.41 /7.45 6.53/6.80/7.36 17.06/18.01/19.08

Predictions in 15 min
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FIGURE 6. Prediction visualization in 15 min.

node parameters. Through analysis, it has been observed
that the aforementioned models place greater emphasis on
mining spatial correlations of traffic information. As a result,
their prediction results outperform conventional prediction
methods and simple FNN models.

On the METR_LA dataset, the MAE values of baseline
models when predicting the traffic speed in the future 15,
30, and 60 minutes are 4.76, 5.07 and 6.81, respectively. The
MAE of our STDGCN model at the corresponding time steps
is 4.56, 5.02, and 6.91. These values are 4.20%, 0.99%, and
1.44% higher than the optimal value achieved by the baseline
model.

In the 15, 30, and 60 minutes predictions, the AGCRN
model from the baseline models achieves the lowest RMSE
values of 5.48, 6.54, and 7.50, respectively. In comparison,
our model has RMSE values that are 0.55%, 1.99%, and
0.67% higher than the AGCRN model, respectively. Looking
at the data in Table 2, we find that our model performance
also improves to varying degrees on the PEMSD4 dataset.
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Predictions in 30 min
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FIGURE 7. Prediction visualization in 30 min.

STDGCN model is shown to have certain advantages
in capturing spatio-temporal correlations. Our proposed
method for generating dynamic adjacency matrix has shown
superior performance compared to models that directly utilize
predefined graph structures for prediction. By integrating
dynamic feature extraction and node embedding, our method
comprehensively considers the impact of spatial correlation
between nodes in the graph. Additionally, the calculation
of similarity enables us to obtain the spatial similarity
relationship between nodes, which provides better support for
subsequent prediction tasks. For a more intuitive understand-
ing, we visualize the prediction results for the second node in
the PEMSD4 dataset at different time steps in Fig. 6, Fig.7,
and Fig.8.

The core concept of STDGCN model is to incorporate a
dynamic adjacency matrix, which enables spatial relation-
ships between nodes to evolve over time. This dynamic
adjacency matrix is computed based on the temporal intervals
and spatial distances of the traffic data and updated at each
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Predictions in 60 min
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FIGURE 8. Prediction visualization in 60 min.
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FIGURE 9. Training time comparison.

time step. As a result, the model is able to effectively capture
the dynamic spatial relationships between nodes at different
time steps.

To further investigate the impact of each component of
the STDGCN model on its performance, ablation experi-
ments were performed. The basic modules responsible for
the generation of the dynamic adjacency matrix, namely
the GRU module of the input encoding module and the
cosine similarity computation module, are removed. Table 3
shows the performance metrics of the model for predicting
30 minutes of data under different module deletion scenarios.

By comparison, it can be observed that removing the essen-
tial module for generating the dynamic adjacency matrix
significantly deteriorates the performance of the model. This
is because the GRU coding module captures both static spatial
information and dynamic temporal features. Meanwhile, the
cosine similarity computation module updates the temporal-
spatial correlations between nodes at each time step, enabling
the generation of an adjacency matrix that deeply explores
the temporal and spatial dependencies between nodes.
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TABLE 3. Comparison results between static and dynamic adjacency
matrices.

METR_LA (30min)
Removed modules

MAE RMSE
GRU module ( In the input 8.66 18.96
encoding module)
Cosine similarity calculation 8.82 18.01

module

Thus, the proposed method in STDGCN model effectively
incorporates both static and dynamic spatiotemporal features
and further leverages similarity computation to enhance
prediction accuracy.

In addition to the aforementioned experimental content,
we compare the training time of the five baseline models
with the STDGCN model to assess the operational efficiency
of the model and its demand on computational resources.
Specifically, we compare the average computation time
required to train each model for one epoch. The results of
this comparison are shown in Fig. 9. We observe that the
DCRNN model requires the longest training time among the
aforementioned models, with a duration of 244.66 seconds
per epoch. T-GCN, Graph Wavenet, ASTGCN and AGCRN
models are trained for 12.27, 76.68, 60.39 and 16.78 seconds
per epoch, respectively. The training time of STDGCN is
18.78 seconds per epoch. Although the training time of
STDGCN is slightly longer than that of TGCN and AGCRN,
the prediction accuracy of STDGCN is better than that of the
previous experiments. Therefore, the longer training time of
STDGCN can be considered as a trade-off for its improved
prediction accuracy, compensating for the time consumption.

VI. CONCLUSION AND FUTURE WORK

We propose a spatial-temporal dynamic graph convolutional
neural network for the traffic prediction task. With an
input encoding module, we extract hidden states at each
time step that contain both static spatial and dynamic
temporal information. Using cosine similarity computation,
we generate a dynamic adjacency matrix that captures
dynamic spatial-temporal information. By combining GCN
and GRU, we leverage this dynamic adjacency matrix for
the traffic prediction task. Through experiments on two
datasets, we validate the feasibility of the proposed method
for generating dynamic adjacency matrices and further
demonstrate the significant impact of extracting dynamic
spatial relationships on the accuracy of traffic prediction.
In future research, we will continue to explore the relationship
between temporal, spatial and spatial-temporal correlations
and consider external factors such as weather to further
enhance the performance of multidimensional and multi-step
traffic prediction models.
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Abstract. Time series data is collected in chronological order to represent how the
collected data changes over time. This type of data is susceptible to interference
from external factors that ultimately make the data missing. Missing data will
cause the lack of some historical information, and it is not conducive to the
development of downstream tasks. In recent years, Generative Adversarial
Networks(GAN) GAN is widely used in image processing tasks and has achieved
good results ,which can also be applied to time series generation and interpolation
tasks. We analyze the types of time series data missing, the structure of general
GAN, and compare three models such as E2ZGAN, BIGAN and MBGAN, focusing
on the comparison of the model composition of generator and discriminator, so as
to provide ideas for the subsequent optimization application of GAN in time series
data imputation.

Keywords. Imputation, GAN, Data missing, Generator, Discriminator, Time
series data.

1. Introduction

Time series data is the most widely used data in daily life. Such as temperature data,
stock data, traffic flow data, patient physiological index monitoring data, etc. These
data provide the reference basis for daily life, travel, employment and so on. However,
the acquisition of time series data requires the relevant equipment to work continuously
and normally, so the data is easily disturbed by external factors such as sudden power
cut, machine error and so on. Missing data will cause the loss of effective information,
which is not conducive to capturing the temporal relationship and potential connection
among the data in the complete observation cycle, and will bring trouble to the
development of subsequent tasks such as prediction and evaluation. Data imputation is
to fill the missing data caused by external reasons by mining the internal relationship
between the original data and using relevant algorithms. The imputed data should be
the same distribution as the original data.

Missing data can be classified as missing completely at random(MCAR), missing
at random(MAR), missing not at random(MNAR)[1].MCAR means that the missing
data is random, and the missing data does not depend on other variables. MAR refers to
missing data dependent on other complete variables. MNAR means that the absence of
data depends on the incomplete variable itself. Missing data processing can be basically
classified into three methods: deletion method, the imputation method based on

! Corresponding Author: Wenjuan Xiao, Contact details.xwj@xbmu.edu.cn
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statistics, and the imputation method based on machine learning. The direct deletion
method aims at the time series that is completely missing at random. At the same time,
only when the amount of missing data is small and the impact on subsequent tasks is
small, this part of missing values can be ignored or deleted directly. This method is
bound to lose important information in the data, and is not suitable for tasks where the
data single node contains rich information.

Statistics-based algorithms usually follow a strict stationarity assumption, that is,
assume that the data changes follow a probability distribution, and use the data values
that best matches the predicted probability distribution to impute the missing data
points[2]. Statistical method imputation includes adjacency imputation, eigenvalue
imputation and linear interpolation[3]. Based on machine learning imputation methods,
common methods include nearest neighbor method (KNN), recurrent neural Network
(RNN), random forest and matrix factorization based missing values imputation
algorithms[4,5]. These methods need to mine the internal relationship between data and
are more suitable for random missing data.

With the rapid development of generative adversarial networks(GAN) and its
excellent performance in the image generation task, many experts and scholars have
applied GAN to the generation and interpolation of time series data, and achieved good
results[6,7]. The essence of these methods is to use the data near the missing point as
the feature, predict the data of the missing point, and mine similar change models from
a large number of historical data, so as to carry out more accurate data filling.
E2GAN[8], BIGAN[9,10] and MBGAN]J11] are typical models for imputation and
filling of time series data using GAN, and we will further compare and analyze in the
following.

2. Basic Definition of GAN

Generative Adversarial Networks (GAN) is a kind of generative neural network
proposed by Goodfellow[12] et al in 2014. The structure of the generative adversarial
network is composed of a generator and a discriminator. During the training process,
the task of the generator G is to continuously generate data (fake data), and the first
input of the generator is random noise. The task of the discriminator is to determine
whether the result generated by G is true or false. The two networks fight against each
other. The generator G tries to generate fake data that can deceive D, and the
discriminator D tries to identify the fake data generated by G. Through continuous
training, when the probability of D identifying fake data reaches 50%, the balance is
reached and the generator achieves good results.The basic structural framework of
GAN is shown in Fig. 1.

Real Samples $

G j

Generated Fake
Samples
Training

Figure 1. Basic Structure of GAN
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The goal of GAN can be expressed as Eq.1:

min max V(D,G) = E,_p,, o[10g D(0)]+ E._p . [logl~ D(G())] (1)

The optimization of the discriminator is realized by

implementing mglx V(D,G) .V(D,G) is the objective function of the discriminator,

where E,_p, (n[108D(x)] represents the mathematical expectation of the

discriminator on the probability of discriminating a sample from the real data
distribution. For real data, the probability of predicting a positive sample is closer to 1,

the better the effect is. EZNPZ(Z)[IOg(] _D(G(Z)))] represents the expectation of the

negative logarithm of the prediction probability obtained after the sample sampled from
the noise data distribution is sent to the discriminator through the generator to generate

min max V' (D, G)
G D '

data. Optimizations of the generator pass Implementation

3. Preliminary

In this section, we will briefly introduce some basic definitions and notations that will
be used to fill missing data. Time series data in daily life are divided into univariate
time series data and multivariate time series data. Univariate and multivariate are
distinguished by the number of characteristic variables at a certain time observation
point. For example, the weather data of a specific day is actually composed of multiple
features such as temperature, humidity, and air quality of the day, so the collection of
weather data is multivariate time series data. This paper focuses on the imputation of
missing values for multivariate time series data.

We denote multivariate time series dataset contains a set of samples

S:{Xsz:"'aXs}.Each sample in S,i.e., X:{Xt VX, X, }T is a time series
1 2 n

matrix observed at the timestamp lists 7 =(Z;,¢,,"*-,¢,) In particular,the i-th

observation of X is x ,which consists of d attributes {xll , xf_ , x:’ }

Me Rnxd
We use mask matrix M to denote the missing values. . And each

element of M can be defined as Eq.2:

Vi 0 zfxtl is missing
t; .
1 otherwise

2

Because the sampling interval of time series is not necessarily fixed, in order to
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record the time difference between two adjacent data in time series, § matrix is

introduced to record the observation time difference between the current value and the
last effective value, which is convenient for the subsequent calculation of the decay
factor of historical memory vector. The followings is the calculation way of § .

L=t Mij_1 =1
) , iy
é‘l{ = 5471 +1; _tH;M,i_] =—=0&>0
0, i==0 -

There is an example to illustrate the relationship between X , T, M and § .In the

following example, d=4, n=4 and "none" is missing value.

3 5 none 1

X = 2 none 7 3 T:5
8 9 2 none (4) 12 (5)
none 2  none 2 16
1 1 01 0
PR 5_ 5
1110 6) 7127 70 @
01 0 1 4 4 4 11
4. Method

In order to systematically study the application effect of GAN in time series data
imputation, we want to mine the similarities and differences between models. We
selected three models such as E2XGAN, BIGAN and MBGAN for comparative analysis.
The reason that we choose these three models is that they all take the generative
adversarial network as the basic structure, and perform different degrees of
improvement in the generator and discriminator. They are combined the deformation of
RNN, such as LSTM, GRU and other structures to complete tasks such as filling and
forecasting of time series data. In the following, we will carry out further comparative
analysis of these three models.
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4.1. E°’GAN

Luo et al.,proposed E23GAN in 2019. It is a further application of Gated Recurrent Units
for Imputation (GRUI)[8]. GRUI decays the historical memory vector of this
dimension according to the length of the data missing time, that is, the 0 matrix. To
accurately reflect the effect of the duration of missing data on the current observation
value, the attenuation factor 3 is introduced, and the formula is expressed as follows:

ﬂt,. = % max(0,wy 8, +by) ®)

Where, B 6(0,1] are the training parameters, denotes the time interval of each

dimension at the current moment. The decay of the historical memory vector is
inversely proportional to the growth of the time interval. The larger the time interval is,
the smaller the influence of the historical memory vector on the current imputation data
is. The updated GRU and GRUI are shown in FIG. 2.

_6.4_11.1

» out

out

Figure 2. (a) GRU (b)GRUI

The overall framework of E?’GAN is based on GAN, contains a generator and
discriminator, and adopts the idea of binary game for adversarial training. The overall
framework of the E°GAN is shown in Fig.3.

Input Generator Discriminator
backpropagation backpropagation

I_O_'__'_l_____: [ ] Fake "7 TTTTTTTTTON i
| nemna i1 Encoder Decoder 1 comple: |
| incomplete datai ! | H
1 [ ! tedata, ,
Lt TS ! | . !
0 G, ! !

! ! X ! ! - . — . ‘
Dl s S ! ] | !
1 1
[ PR | 1 1 I
1 | 1 1 I
1 I 1 1 1

Figure 3. E*GAN architecture overview

The G is constructed by Encoder-Decoder. The input of encoder part is a time
series data containing missing values. After compression by the denoising autoencoder
containing GRUI, the low-dimensional feature expression vector z of the input data can
be obtained. In the decoder part, the GRUI unit is also used to reconstruct the complete
time series data. After multiple rounds of training, the generated data that can fill the
original data is obtained. This means that the generator is able to generate new samples
based on the original data x that conform to the distribution of the original dataset.

The input of D consists of two parts, the real missing time series data and the
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complete fake time series data generated by the G. The main component of the D is still
the recurrent neural unit, whose main role is to process time series to obtain its
historical memory vector. The output part is one-dimensional mapping by a fully
connected layer neural network, and finally the sigmoid function is used to compress
the output value. At the same time, in order to solve the mode collapse problem, the
algorithm uses WGAN with relatively more stable training. The goal of WGAN can be
expressed as follows:

minmax V(D,G) = E,_p,,, D)+ E._p () [-D(G(2))] ©

E2GAN is suitable for multivariate time series filling and achieves good imputation
results.

4.2. BIGAN

BIGAN is a time series imputation model proposed by Mehak Gupta et al in 2020.The
main structure of this model is still the GAN[9]. LSTM is the main method adopted in
the G module and the D module.

G uses a bidirectional recurrent network, and the forward training and backward
training generate a value respectively. After multiplying the two values by their
respective impact factors for missing data, they are sent to the fully connected layer to
generate the filling value of the missing position.D is also relatively simple and
consists of Bidirectional LSTM .D uses the cross-entropy loss function to improve its
ability to distinguish between the true value and the generated value through
continuous training. The specific structure of BIGAN is shown in Fig.4.

Input Generator Discriminator

1 I 1
1 ! 1 1
1 [ . I
' = e
1 1
1| Foward Time Decay |' o | - | ﬂ
! :’: y 4 I
I I
: Backward TimeDecay |1 : :
1

ey ———. LI ____ ! Lo
backpropagation

Figure 4. BIGAN architecture overview

The BIGAN model employs four different loss functions. The generator loss is
composed of the sum of the mask reconstruction loss function, the classification loss
function of the generator, and the consistency loss function of the difference between
the forward generation value and the backward generation value. The cross-entropy
loss function is used in the discriminator part.

The model can be used for data imputation and subsequent prediction task. In the
imputation setting, in addition to the original missing data, part of the data should be
randomly deleted. In the end, the original missing data and deleted data should be filled.
In the prediction task, the time series is divided into observation window and prediction
window with missing value, and all the window values are predicted. The model is
verified by three real data sets, and filling effect is good.
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4.3. MBGAN

MBGAN is a time series imputation model proposed by Ni etal in 2020[11]. The main
framework of this model is still GAN. This model pays more attention to the mutual
influence between multivariate time series data, so before sending the data into the
generation module, the Decision Tree and SVM- RFE are used to extract the features of
the data.Fig.5 is the structural block diagram of MBGAN.

Backward Time

Input Feature Generator Discriminator
Extraction

[ttt | oSS oooms TTTTTTTRTTTTTTTY Tttt
|| Original Data | 1| SVM- ' !
1 1| RFE b .
! 1
. .. [ '
Foward Time :.i Decision : 1 \
Decay i | Tree I‘: :
I ! 1
I ! :
1

Decay |, r
| »' Temporal

[
[N

: (L
! [

Figure 5. MBGAN architecture overview

The overall inputs to MBGAN are time series data with missing values, a mask
matrix, forward time decay and backward time decay time series data. The forward
time decay and backward time decay are borrowed from the BIGAN model.

In order to deeply mine the relationships between multivariate input features, a
multi-head self-attention mechanism is introduced into the generator, and a
bidirectional GRU is used to reveal the dependencies between time series data. Finally,
the data is generated through the linear layer output. G is also discriminated by a
bidirectional GRU layer and a linear regression layer.

5. Experment

5.1. Datasets

In order to compare the performance of the three models, we verify them through
experiments. We use an air quality datasets of a Chinese city including an hourly data
from May 2014 to May 2015. The dataset contains more than 8000 data, each
containing six features related to weather conditions :pm2.5, pm10, SO2, NO2, CO and
03. To facilitate comparative analysis, pm2.5 features are selected for repair.

5.2. Evaluation Metrics

We randomly deleted between 10 % and 30% of the data, simulating missing data

completely at random. In this work, we use two commonly used metric, MAE and
RMSE. Specifically, the calculation equation are as follows:

1 < R
MAE == |y, 5| (10)
i=1
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1 N2
RMSE = ;(yi_yi) (11)

Here ), and )A/i represent the predicted value and real value at the i-th point at time

t, respectively. Generally, lower MAE and RMSE values indicate better model
prediction performance.

5.3.Comparison and Result Analysis

Table I show different imputation performence with different missing rate. MBGAN
performs well in this task due to using the feature extraction module and attention
mechanism.

Table 1. Imputation Performernce Under Different Missing Rates

10% MISSING RATE 20% MISSING RATE 30% MISSING RATE

MODEL MAE RMSE MAE RMSE MAE RMSE
E’GAN 25.83 26.90 25.87 27.89 26.84 28.54
BIGAN 24.83 26.55 24.94 27.85 24.84 27.54
MBGAN 10.83 4.55 11.31 16.83 12.61 17.47

6. CONCLUSION

Through the comparative analysis of the three GAN-based time series data imputation
models of E2GAN,BIGAN and MBGAN, it can be seen that the idea of confrontation
adopted by GAN makes the process of data filling more intuitive. By further
optimizing and integrating the input data characteristics and combining with the
deformation of RNN, high-quality data can be generated. In order to further improve
the recognition ability of the discriminator, it can also be optimized by RNN and other
structures. In the future, how to improve the stability and speed of GAN model training
can be further studied.We hope the generative adversarial network can be more
practical and applied in time series data filling.
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